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Abstract—Cloud data centers (CDC) are an integral part of
today’s internet services. Enterprises and Businesses around the
world rely heavily on data centers for their daily computation and
IT operations. In fact, every time we search for an information
on the internet, or we use an application on our smartphones,
we access data centers. In CDC, most compute resources are
represented as virtual machines (VMs) which are mapped into
physical machines (PMs). Performance is often is a key metric for
CDC. This paper presents a stochastic model based on queuing
theory to aid in studying and analyzing performance in CDC.
CDC platforms are modeled with an open queuing system that
can be used to estimate the expected Quality of Service (QoS)
guarantees the cloud can offer. We give numerical examples
to show how the model estimates the number of required
VM instances needed to satisfy a given the QoS parameters.
In particular, we plot the response time, drop rate and CPU
utilization while varying the incoming request arrival rate, and
for different number of VM instances. We cross-validate our
analytical model using a DES (Discrete Event Simulator). Our
analysis and simulation results show that the proposed model
is able to estimate the number of VMs needed to achieve QoS
targets when varying the arrival request rate.

Keywords—Cloud Data Center, Queueing Theory, Perfor-
mance Analysis

I. INTRODUCTION

A cloud computing infrastructures consist of services that
are offered and delivered through a data center, that can be
accessed from a web browser anywhere in the world [1]. Cloud
computing providers offer computing resources (servers, stor-
age, networks, development platforms, and applications) to
users either elastically or dynamically, according to user-
demand and form of payment [2]. Cloud computing addresses
three main areas of operation such as Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-
a-Service (SaaS) [3]. Compared to SaaS and PaaS, IaaS it is a
form of cloud computing that provides virtualized computing
resources over the Internet [4]. In a PaaS model, a cloud
provider delivers applications, and other development, while
providing cloud components to software over Internet [5]. On
the other hand, SaaS uses the web to deliver applications that
are managed by a third-party vendor and whose interface is
accessed on the clients’ side over Internet. Because of the web
delivery model, SaaS eliminates the need for organizations to

install and run applications on their own computers or in their
own data centers [6].

In cloud computing, any efficient resource management
scheme would seek to allocated computing, storage, net-
working and energy resources to a set of applications, in a
manner that satisfies the QoS of the cloud-hosted application
or service while minimizing the cost associated with using
physical infrastructure resources of the CDC [7]. Performance
evaluation of QoS cloud centers is a very crucial research task
which becomes difficult due to the dynamic behavior of cloud
environments and variability of client demand [8]. A typical
QoS metric specifies a set of critical performance parameters,
which may include mean response time, mean drop rate, mean
request queuing length, mean waiting time, mean throughput,
and blocking probability.

Queueing theory has been regularly used in the literature to
study and estimate QoS parameters in cloud environments [9].
For example, in [10], an analytical performance model of
single VM live migration is evaluated which show that an
effective live migration can reduce service rejection probability
scenarios and total delay. In [11], a statistical distribution
is proposed with the extension of CloudSim, to overcome
the virtualization layer overhead, insufficient trace logs and
complex workload in cloud computing resource usage. Guo et
al. [12] studied the performance of M/M/m queuing model
to optimize the performance of services in an on-demand
service in cloud computing. Ghosh et al. [13] proposed an
interacting stochastic model approach to overcome the perfor-
mance quantification of a large-scale virtualized IaaS CDC.
Sun et al. [14] developed a new technique for efficient live
migration of multiple VMs based on queuing models. To
evaluate the blocking rate, they modeled the arrival request
using the M/M/C/C queuing model. Similarly, to evaluate the
average waiting queue length, the average waiting time, the
average queue length and the average sojourn time of each
migration request, they modeled the arrival request using the
M/M/C queuing model. Salah et al. [15] proposed an analytical
model, based on Markov chains, for cloud-hosted applica-
tions and services. The proposed model predict the number
of VMs instances needed to satisfy a given Service Level
Objective (SLO) performance requirement such as response
time, throughput, or request loss probability.
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In this paper, we show how queueing theory can be used
in estimating key performance metrics in CDC. The main
contributions of this paper can be summarized as follows:

• A queuing analytical model for CDC is presented, and
analytical equations are derived for key performance
metrics.

• The analytical model is cross-validated with a simulation
model based on Java Modeling Tools (JMT) simulator.

• Numerical examples are given to show how our model
can be used to satisfy key QoS parameters, and also
to determine the required number of VMs needed under
variable workload conditions.

The rest of the paper is organized as follows: The proposed
Data Center model is presented in section II. Section III
presents the analytical model for the proposed model. Sec-
tion IV presents the numerical and simulation results. Finally,
section V is devoted to the conclusion.

II. CLOUD DATA CENTER MODEL

We consider a large data center in a cloud system composed
of PMs with each PM hosting many VMs, as illustrated in
Figure 1. Indeed, large data centers of Google, Microsoft, Ya-
hoo and Amazon etc. contains tens of thousands of PMs [16].
Each VM is allocated to one PM, where as a PM can be
allocated multiple VMs through a hypervisor. VM it is a
software that can run its own operating system and applications
just like an operating system on a physical computer. The
Load Balancing (LB) server maintains the schedule queue
to receive all requests from clients. A service request from
a client is transmitted to the LB server running a service
application [17], associated with an SLA. Client requests are
submitted to a LB queue and then processed on the First-
In First-Out (FIFO) basis. The arrivals of requests follow a
Poisson process. Therefore, the inter-arrival times between
successive arriving requests are independent and exponentially
distributed random variables with rate 1

λ . Queued requests are
distributed to different PMs and the scheduling rate depends
on the LB server capacity. We assume that the service time
of the LB server queue is exponentially distributed with mean
service time 1

µ . Thus, the LB server queue is modeled as an
M/M/1/C queuing system [18]. Such a queue has a finite size
C; so, an arriving request can be rejected if it finds the buffer
full, otherwise it will be accepted.
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Fig. 1. The Architecture of the Cloud Data Center system

We suppose there are N PMs in the CDC. The requests
are evenly distributed by the LB server to each PM with the
same probability 1

N . Consequently, the arrivals of requests at
each PM follow a Poisson process with arrival rate λ

N . We
assume that all PMs are homogeneous service. Therefore, the
server time of each PM is exponentially distributed with mean
service time server 1

r . We model each PM in the CDC as an
M/M/m/K (K > m) queuing system [18]. Each PM may run
up to m VMs, and K is the maximum number of the requests
in the PM. We assume that an inter-arrival time of requests
and service times are exponentially distributed. If the queue
reaches its maximum limit, the extra requests are dropped. If
the resource is available then request is accepted and routed by
the LB to the corresponding VM. It’s assumed that all VMs
allow the same web services with the same functionality to
clients via Internet. As the maximum number of requests in
the system is C, we assume that C is equal to the number of
PM times the number of VMs that can be allocated to a single
PM. So, C is given by the following formula

C = N ×K (1)
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Fig. 2. Queuing Model

The queuing model of the CDC is shown in Figure 2. An
arriving request that finds the LB queue full will be dropped.
Once the request is admitted to the LB queue, it must wait until
the LB processes it on a FIFO basis. We assume we operation
in a homogenous cloud environment where by all PMs are
equal in processing capacity and sizes with and each PM has
a waiting buffer which can occupy, containing at most (K-1)
requests. If a PM with free buffer spaces is found, the request
is put into the PM waiting queue for further service. If all PMs
waiting buffers are full, then the request is dropped. Thus, a
client request may be assigned to a PM, dropped because all
PMs waiting buffers are full, or dropped due to the insufficient
LB buffer space.

III. THEORETICAL ANALYSIS

A. Load Balancing Queueing Model

The LB is modeled as an M/M/1/C queue. The maximum
number of requests in the system is C, which implies a
maximum queue length of C-1. An arriving request enters the
queue if it finds less than C requests in the system and is lost
otherwise. Using the balanced equations and the normalization
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condition, we obtain the steady-state probability of k requests
in the system

πk =
1− a

1− aC+1
ak (2)

where a = λ
µ denotes the offered load in LB server.

The mean throughput service X is given by

X = λ
1− aC

1− aC+1
(3)

The mean number of requests in the LB is

E(k) =
C∑
k=1

kπk =
a

1− a
1− (C + 1)aC + CaC+1

1− aC+1
(4)

We can obtain blocking probability due to lack of space in
LB queue

Ploss = πC =
1− a

1− aC+1
aC (5)

We use Little’s law formula [19] to obtain the mean re-
sponse time of requests at the LB as

E(rb) =
E(k)

X
(6)

B. Cloud Data Center Queueing Model
We model access to each PM as an M/M/m/K (K > m)

queue. The maximum number of requests in the PM is K, and
each PM may run up to m VMs. Let us define the state of a
PM as the total number of VMs in the PM. Figure 3 exhibits
the transition diagram for the new request in a single PM.
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Fig. 3. Continuous Time Markov chain for new request in a single-PM

Let πi(n) denote the steady-state probability of having
n requests in PMi(i = 1, 2, ..., N). Using the balanced
equations and we note α = λ

N , we find that

πi(n) =


π0(α)

n

n!rn
,∀n < m

π0(α)
n

m!mn−mrn
,∀n ≥ m

(7)

where π0 is given by

π0 = (1 +
(mρ)m(1− ρk+1−m)

m!(1− ρ)
+
m−1∑
i=1

(mρ)i

i!
)−1 (8)

where ρ denotes the offered load and is expressed as

ρ =
α

mr
(9)

The effective rate of arrivals, λeff , to the service is given
by

λeff = α(1− πi(K)) (10)

We then deduce the performances parameters as follows.
First, the rate of loss can be obtained as follows

v = απi(K) (11)

The CPU utilization of each VM instance can be expressed
as follows

UVM =
λeff
mr

= ρ(1− πi(K)) (12)

We compute E(n), the mean number of requests in the PMi

as

E(n) =
K∑
j=1

jπi(j) (13)

The mean number of requests waiting in the PMi can be
obtained from

E(nw) =

K∑
j=m+1

(j −m)πi(j) (14)

Finally, we use Little’s formula [19] to obtain the mean
response time and mean waiting time in the PMi as follows

E(rc) =
E(n)

α(1− πi(K))
, E(w) =

E(nw)

α(1− πi(K))
(15)

Based on Figure 2, we compute the response time T for a
request on a system, the probability that a request is served
below a specific time t is given by

T = E(rb) + E(rc) (16)

IV. SIMULATION AND NUMERICAL RESULTS

There are a number of available network simulation tools.
Some of these simulators are designed specifically for cloud
environments (e.g., CloudSim, iCanCloud, EMUSIM, MDC-
Sim) [20], [21], and some are generic in natures (e.g., OPNET,
NS, OMNeT, J-Sim) [22]. All of these available simulators
did not have the capabilities to capture accurately the internal
behavior and dynamics of the CDC. For this reason, we choose
the Java Modeling Tools (JMT) to implement the performance
of the proposed model [23], [24].

Simulation Environment: We consider a scenario of a
small scale CDC where the CDC has 10 PMs. The average
request arrival rate to the system is 1000 requests per second.
The service times of each request in the LB are exponentially
distributed with an average of 0.0001 seconds. Two types of
commonly requests are considered; namely: (1) web requests,
and (2) database requests. The average service time at the
PMs of a web requests is 10 miliseconds while of a database
requests require on average 15 miliseconds. The maximum
number of requests in the system is 300, and the maximum
number of the requests in the PM is 30. Note that, we
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vary some of these parameters depending on the simulation
scenarios whereas the others remain fixed.

Performance Analysis: The results obtained from simula-
tion are represented by the black circles, whereas the curves
represented by lines are those of analysis. The numerical
results are shown in Figures 4 and 5. We have analyzed the
web and database performance curves using multiple VM
instances as function of requests arrival rate. Performance
curves as those of the response time, drop rate and CPU
utilization are plotted in the figures.

Figure 4 exhibits performance results obtained from simula-
tion and analysis for web requests; whereas, Figure 5 exhibits
those results for database requests. All of these figures depict
clearly the impact of the number of VMs on key performance
metrics. Specifically, Figure 4 (b) shows that when the requests
arrival rate reaches the 2200 requests per second, we can see
the impact of the number of the VM instances on the drop rate
measure. The response time variation versus requests arrival
rate depicted in Figure 4 (a) demonstrates that from 1600
requests per second, as the number of VM instances decreases,
the response time increases and reaches 0.14 second. It is
obvious that as the number of VMs increases the drop rate
decreases. However in the database performance case (Figures
5(a) and (b)), when the arrival rate reaches the 1300 requests
per second, we can observe that as the requests arrival rate
and the number of VMs decrease, the response time and
drop rate increase. Figure 4(c) exhibits the CPU utilization
for multiple numbers of VMs. We observe that for the three
values of number of VMs (namely: 21, 22 and 23), the curves
are approximately linear, consequently as the number of VMs
increases as the CPU utilization increases. As opposed to
scenario of having 20 VMs, the CPU utilization parameter
in these cases starts from 50% for 1000 requests per second
and reaches 100% from 2200 requests per second and more.

Figures 5(a) and (b) show that when we increase the number
of VMs and the requests arrival rate, the response time and the
drop rate metrics decrease. Considering the CPU utilization
measure depicted in Figure 5(c), we observe that when we
have just twenty VMs, the CPU utilization percentage is higher
and it reaches 100% from 1500 requests per second and more.
For the three values of VMs (21, 22 and 23), the three curves
are similar and when the requests arrival rate tends to 2300
requests per second, the CPU utilization reaches 100% value.

V. CONCLUSION

In this paper, we presented an analytical model that can
be used in studying the performance of CDC and is able
to estimate accurately the needed number VMs to achieve a
target QoS metric. We have considered the typical architecture
in which a CDC houses a collection of PMs that will be
used to run VMs and also LBs. Scenarios were presented to
illustrate the usefulness of our analytical model-specifically,
in determining the impact of the number of allocated VMs on
key performance and QoS parameters which included response
time, drop rate and CPU utilization. We cross-validated the

results obtained from our analytical model with simulation re-
sults obtained from the popular JMT simulator. The simulation
and the analysis results are in agreement and thus implying
that, our analytical model is correct. As a future work, we plan
to conduct experimental work of an elastic-scaling mechanism
on a real-world CDC in which our analytical formulas derived
in this paper are used to scale resources automatically to meet
QoS targets in accordance to variable workloads.
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Fig. 4. Web performance curves using multiple VM instances as functions of requests arrival rate
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